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Abstract

We present a detailed algorithm of rotationally invariant lattice Boltzmann method (RILBM). The suggested approach
overcomes discrete artifacts present in the standard lattice Bhatnagar, Gross, and Krook (LBGK) model by introducing a
generalized particle collision operator in arbitrarily rotated frames. We demonstrate that the Navier–Stokes equations are
exactly recovered through the Chapman–Enskog expansion, and present two computational cases that show independence
of numerical results relative to the lattice orientation.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Treating continuum phenomena via discrete methods automatically involves worrying about proper con-
trol of numerical artifacts. When modeling of continuum involves just discretization in space and time of some
macroscopic master equations, the available applied mathematics provides ample means to ensure that the
error decreases with the finer subdivision of physical space/time. The situation is more delicate for the lattice
gas (LG) and lattice Boltzmann methods (LBM) that are constructed based on a finite set of particles velocities
and by that construction carry the challenge to preserve the invariance of system properties in respect to rota-
tion of the lattice. Intuitively, the corresponding errors do not have to go away with spatial resolution, since
the base set of particle velocities is always the same discrete one and certain directions are preferred. Since long
time ago [1–4], it has been known how to construct smart lattice models that enforce isotropy in the limit of
small mean free path k (roughly, the lattice size) relative to the macroscopic scale L, which is of course one of
the key factors allowing for successful application of lattice methods in hydrodynamics. In this paper we give
in detail a description of a lattice algorithm that ensures rotational invariance for arbitrary Knudsen numbers
Kn ¼ k=L. The conceptual framework was first presented in [5]. In addition, we provide numerical validations
for some essential flow properties.
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The idea of the present approach is to employ the existence of a family of symmetries hidden in the con-
struction of LBM, and indeed in any kinetic equation formulated in the configuration space. By this we mean
that the coordinate system of velocity space can be defined in an absolutely arbitrary way relative to that of
physical space. Such kinetic equations can be equally well formulated using any set of base vectors of velocity
space, which in principle can even vary as a function of physical space and time and/or other system variables.
In particular, alignment of base velocity vectors with the coordinate system of physical space in the original
LG/LBM formulation is merely a convenient choice. Here, we will exploit just one possible method of variable
definition of velocity space bases, namely the random rotation of a prescribed finite set, in order to construct
an LBM method that is rotationally invariant for finite Kn. In this way isotropy is achieved cheap, without the
necessity to increase the number of lattice speeds.

It follows that the method suggested here is another attempt to connect the discrete and the continuous
descriptions, using an economical version of the former. Aside from this fundamental interest, there is a very
practical motivation to develop these methods. Indeed, LBM seem to be a natural approach to micro- and
nanofluidics, much more fundamental than the (generalized) Navier–Stokes (NS) equations-based and much
less computationally expensive than the molecular dynamics and Monte Carlo methods. Some work using
conventional LBM has already shown promise for capturing subtle high Kn flow features (cf. [6–9]). In par-
ticular the famous Knudsen effect, the non-monotonic behavior of mass flux through a pipe as a function of
pressure drop, unexplainable within hydrodynamics, has been demonstrated. For the quantitative treatment
of flow in complex geometries, and especially for serious engineering applications in nanodevices, the rota-
tional invariance issue should be dealt with in a comprehensive way.

2. Rotationally invariant algorithm and hydrodynamic properties of the corresponding kinetic system

Let us start with outlining the basic concept of this approach which has been presented elsewhere [5]. The
conventional lattice Boltzmann equation (LBE) is expressed in the following form:
fiðxþ ciDt; t þ DtÞ � fiðx; tÞ ¼ Xiðx; tÞDt; ð1Þ

where fiðx; tÞ are the distribution density functions for the particles with velocity ci, and the collision term usu-
ally takes the so called BGK form [4],
Xiðx; tÞ ¼ �
1

s
½fiðx; tÞ � f eq

i ðx; tÞ�: ð2Þ
All the hydrodynamic quantities are defined in terms of moments summation of fi over ci:
qðx; tÞ ¼
Xb

i¼1

fiðx; tÞ; quðx; tÞ ¼
Xb

i¼1

cifiðx; tÞ; ð3Þ

Pabðx; tÞ ¼
Xb

i¼1

ci;aci;bfiðx; tÞ: ð4Þ
Here, q, u, and Pab are macroscopic density, velocity, and momentum flux tensor, and sub-indices a and b de-
note Cartesian components in the D-dimensional space. In order to overcome the numerical artifacts introduced
by the finite number of particle velocities, consider an ensemble of lattice velocity sets, B � fCb; b ¼ 1; 2; . . . ; Sg,
such that all the sets have the same origin, identical crystallographic structure, but different orientations in space
[5]. All the possible orientation angles are present in B with equal probabilities. It is readily recognized that
although each Cb is finite, the super set B is in principle an infinite set. Transition between any pair of these sets,
Cb $ Cb0 ; b 6¼ b0, can be realized through a standard rotational transformation. An extended LBE in the infinite
resolution limit on a particular set Cb of the super set B can be written as follows:
ðot þ cb
i � rÞf b

i ðx; tÞ ¼ Xb
i ðx; tÞ; cb

i 2 B: ð5Þ

The next step of this construction is to specify the mechanism of rotating the lattice velocities fcbg � Cb.

This is realized in the algorithm presented here via a transition from Cb ! Cb0 that has a set of rotated discrete
velocities. In principle, for restoring rotational invariance it would suffice that all possible rotated sets are used
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simultaneously, in a way that is not necessary related to the system evolution in physical time. This would
introduce an extended phase space of the system, with an additional dimension that is only used to support
an infinite collection of lattice orientations. However, we postulate a certain ergodicity principle [5] which says
that such ensemble averaging is equivalent to averaging over orientations produced randomly in physical time.
It is certainly not critical, but is just algorithmically easier, that these orientations are created at each physical
time step.

Unlike in the standard LBE, arbitrarily rotated lattice velocities no longer coincide with some nodes on a
given lattice. Because of that, a convenient way to treat streaming of particles is to use a volumetric propa-
gation scheme [12]. On a lattice sub-set Cb obtained by rotating the set of standard LBE speeds by an arbitrary
angle h, particles propagate along cb

i according to the following rule:
fiðx! xþ Diðsx; sy ; szÞ; tÞ ¼ f ð0Þi ðx! xþ Diðsx; sy ; szÞ; tÞ þ f ð1Þi ðx! xþ Diðsx; sy ; szÞ; tÞ; ð6Þ

where
Diðsx; sy ; szÞ � sx signðcb
i;xÞDxx̂þ sy signðcb

i;yÞDy ŷ þ sz signðcb
i;zÞDzẑ: ð7Þ
Here sa ða ¼ x; y; zÞ take values of either 0 or 1, and x̂, ŷ, and ẑ are unit Cartesian vectors. The f ð0Þi and f ð1Þi parts
are defined as follows:
f ð0Þi ðx! xþ Diðsx; sy ; szÞ; tÞ ¼ P i
xðsxÞP i

yðsyÞP i
zðszÞ~f iðx; tÞ; ð8Þ
where ~f i denotes the ‘‘post-collide’’ distribution function, and
f ð1Þi ðx! xþ Diðsx; sy ; szÞ; tÞ ¼
1

2
P i

xðsxÞP i
yðsyÞP i

zðszÞ½ð2sx � 1ÞP i
xð1� sxÞGi

xðx; tÞ þ ð2sy � 1ÞP i
yð1� syÞGi

yðx; tÞ

þ ð2sz � 1ÞP i
zð1� szÞGi

zðx; tÞ�: ð9Þ
Here P i
a and Gi

a are defined as:
P i
aðsaÞ ¼ ð1� saÞ 1� jci;aj

Da

� �
þ sa
jci;aj
Da

; ð10Þ

Gi
aðx; tÞ � ~f iðxþ signðci;aÞDaâ; tÞ � ~f iðx; tÞ: ð11Þ
It has been shown in [12] that such volumetric propagation schemes exactly conserve mass and momentum
while providing for a second order accurate (in time and space) realization of the following effective difference
equation:
fiðxþ ciDt; t þ DtÞ ¼ ~f iðx; tÞ: ð12Þ

Since particles propagate on different lattice sets at different time steps, the collision operator not only

relaxes the system towards local equilibrium, but also transits the system between different subsets Cb and
Cb0 . The challenge is to ensure preservation of correct non-equilibrium properties in such a transition process.
An extended collision operator that delivers this was proposed in [5,10,11]:
~f b
i ðx; tÞ ¼ f eqb

i ðx; tÞ þ 1� Dt
s

� �
f neqb

i ðx; tÞ; ð13Þ

f neqb

i ðx; tÞ ¼ Ub
i : Uneq; ð14Þ

Pneq
ab ðx; tÞ ¼

Xb

i¼1

cb0

i;acb0

i;b½f
b0

i ðx; tÞ � f eqb0

i ðx; tÞ�; ð15Þ

Ub
i;ab ¼

wi

2T 0

cb
i;acb

i;b

T 0

� dab

" #
: ð16Þ
Here, T 0 is the so called lattice temperature (e.g. T 0 ¼ 1=3 in D3Q19) [13,14] and Pneq
ab ðx; tÞ is the pre-trans-

formed non-equilibrium part of momentum flux. The operator Ub
i;ab serves to project the system’s properties

onto the transformed set Cb in such a way that momentum flux between the pre- and post-transformed lattice
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sets (Cb0 ! Cb) is preserved. The equilibrium distribution function f eqb

i ðx; tÞ has the standard form up to the
third order in the post-transformed lattice set Cb [14]:
f eqb

i ¼ wiq 1þ cb
i � u
T 0

þ ðc
b
i � uÞ

2

2T 2
0

� u2

2T 0

þ ðc
b
i � uÞ

3

6T 3
0

� cb
i � u
2T 2

0

u2

" #
: ð17Þ
This distribution function is easily constructed using q and u obtained from the pre-transformed distributions
just because the transformation of lattice velocity bases introduced here leaves these hydrodynamic quantities
invariant.

It is straightforward to also show that the non-equilibrium part of the extended collision operator conserves
mass and momentum as well as preserves the non-equilibrium momentum flux tensor. The latter is essential to
recover the same shear viscosity as in the standard LBGK:
X
i

f neqb

i !
X

i

wi
cb

i;acb
i;c

T 0

� dac

 !
¼ 0; ð18Þ

X
i

cb
i;af neqb

i !
X

i

wi

cb
i;acb

i;cc
b
i;h

T 0

� cb
i;adch

 !
¼ 0: ð19Þ
The preservation of momentum flux follows from satisfying the following condition
X
i

cicif
neq
i ¼

X
i

ciciðfi � f eq
i Þ: ð20Þ
Indeed, from Eq. (14) we have:
X
i

cicif
neq
i ¼

X
i

1

2T 2
0

wicici½cici � T 0I� :
X

j

cjcjðfj � f eq
j Þ ð21Þ

¼ 1

2T 2
0

X
i

wi½cicicici � T 0ciciI� :
X

j

cjcjðfj � f eq
j Þ: ð22Þ
Upon observing that lattice velocity vectors of a standard LBM, such as LBGK, deliver the fourth order isot-
ropy [1,5],
X

i

wici;aci;bci;cci;h ¼
X

i

wi
c4

i

DðDþ 2Þ ðdabdch þ dacdbh þ dahdbcÞ ¼ T 2
0ðdabdch þ dacdbh þ dahdbcÞ; ð23Þ
and noting that
X
i

wici;aci;b ¼ T 0dab; ð24Þ
the validity of Eq. (20) is readily established.
The finite volume-based advection process combined with the extended collision process outlined above

define algorithmically the rotationally invariant lattice system suggested here. It is now important to show that
the formulation of momentum flux according to Eqs. (14)–(16) gives rise to the same viscosity as in the stan-
dard LBGK. In the continuum limit, the effective difference Eq. (12) reduces, at the leading order, to the fol-
lowing equation:
Dtðot þ ci � rÞfi ¼ f eq
i � fi þ 1� Dt

s

� �
f neq

i : ð25Þ
Using the Chapman–Enskog expansion [15],
fi ¼ f eq
i þ f ð1Þi þ � � � ; ð26Þ
the zeroth order of Eq. (25) becomes
Dtðot þ ci � rÞf eq
i ¼ �f ð1Þi þ 1� Dt

s

� �
f neq

i : ð27Þ
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Due to the vanishing right hand side, the momentum Eq. (25) is immediately obtained:
X
i

ciðot þ ci � rÞfi ¼ otðquÞ þ r �
X

i

cicifi ¼ 0; ð28Þ
and from (27) the leading order momentum flux equation can be written as:
Dt
X

i

ciciðot þ ci � rÞf eq
i ¼ �

X
i

cicif
ð1Þ
i þ 1� Dt

s

� �X
i

cicif
neq
i : ð29Þ
By noting that f ð1Þi ¼ fi � f eq
i and using Eq. (20), Eq. (29) is reduced to it’s familiar form:
X

i

ciciðot þ ci � rÞf eq
i ¼ �

1

s

X
i

cicif
ð1Þ
i : ð30Þ
Hence the momentum Eq. (28) can be written as
otðquÞ þ r �
X

i

cicif
eq
i þ

X
i

cicif
ð1Þ
i

" #
¼ otðquÞ þ r �

X
i

cici � s
X

i

ciciðot þ ci � rÞ
" #

f eq
i ¼ 0: ð31Þ
Eq. (31) has exactly the same expanded form as that of the standard LBGK. This means that the generalized
collision operator formulated above exactly recovers the same NS equations as LBGK does, with the same
viscosity equal to
m ¼ ðs� Dt=2ÞT 0:
Furthermore, since the definition of momentum flux is
X
i

cicið~f i � fiÞ ¼ �
X

i

ciciðfi � f eq
i Þ þ 1� Dt

s

� �X
i

cicif
neq
i ; ð32Þ
using Eq. (20) we obtain
X
i

cicið~f i � fiÞ ¼ �
Dt
s

X
i

ciciðfi � f eq
i Þ: ð33Þ
By noticing that the right side of this equation is just the definition of momentum flux in LBGK, we again
show the momentum flux is exactly the same as that of the LBGK. Let us emphasize that all these ‘‘standard’’
features are now obtained in a potentially much more powerful algorithm satisfying invariance under any lat-
tice rotations.

In summary, the fully rotational invariant LBM approach (RILBM) presented here consists of the follow-
ing steps:

(1) Advect the distribution functions on a specific lattice subset Cb using volumetric propagation;
(2) Calculation of the post-advect mass, momentum, and stress tensor from Cb;
(3) Generate a new lattice subset Cb0 by an arbitrary rotation of the existing Cb;
(4) Transform the distribution functions from Cb to Cb0 via applying the extended collision operator (13)

that preserves both the equilibrium and non-equilibrium moments and relax (by s) the distribution func-
tions towards local equilibrium on the new lattice subset Cb0 .

Below we discuss simulation data that provide support for some of the theoretical arguments presented in
this section. Note that this numerical verification is only possible because RIBLM allows an efficient algorith-
mic formulation outlined above.
3. Numerical results

The first test case is a simulation of sinusoidal wave decay involving two distinct orientations. One has the
wave vector oriented along a lattice aligned direction in a square domain, and another is realized via a 45�
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Fig. 1. Comparison of sinusoidal wave decay rate at Kn ¼ 0:00028=2p. Curves with the subscript ‘‘diag’’ refer to the simulation results
corresponding to the 45� rotation of the computational domain.
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rotation in a tilted square domain. Dimensions of the aligned and the tilted square are (128� 128) and
(181� 181), respectively. The wave numbers K (�2p=128) for the simulated sinusoidal waves and other flow
quantities in these two different setups are designed to be equal. Clearly, if a system is lattice orientation-
invariant, decay rates for the two different setups should be the same for all Knudsen numbers
Kn ¼ cssK=2p. As mentioned above, the fluid flow is within the NS regime when Kn� 1. In Fig. 1 we plot
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Fig. 2. Comparison of sinusoidal wave decay rate at Kn ¼ 2:8=2p. Curves with the subscript ‘‘diag’’ refer to the simulation results
corresponding to the 45� rotation of the computational domain. Note that curves corresponding to the RILBM and RILBM_diag results
are both present in this plot, but not visually distinguishable.
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simulation results at Kn ¼ 0:00028=2p. Results given by LBGK and RILBM for both the aligned and tilted
orientations are very close to each other. This indicates that, as expected, RILBM is as accurate as LBGK
in the NS regime and the decay rates given by both methods are not sensitive to the lattice rotation. On
the other hand, in Fig. 2 we plot the results for Kn ¼ 2:8=2p. Because of the sufficient isotropy of RILBM,
it gives the same results for the two different lattice orientations while the LBGK results show a strong lattice
orientation dependence.

The second test case involves sound wave propagation. At the center point of a two dimensional square
simulation domain, the initial value of density (pressure) is set to one percent higher than that in the surround-
ing fluid. Physically, this perturbation should propagate at the speed of sound cs ¼

ffiffiffiffiffi
T 0

p
with a circular front in

all directions, before approaching the square simulation domain boundary. Due to the discrete rotation arti-
facts, the circular sound wave propagation is not expected in a standard LBM at high Kn, even when the front
is far from the domain boundary.

Fig. 3 shows a comparison of sound wave propagation simulated using LBGK and RILBM at
Kn ¼ css=L ¼ 0:00005. At this small Kn, both schemes give satisfactory results. The images represent pressure
distributions. Similar to the shear wave decay case, it is understood that the conventional LBGK is isotropic
Fig. 3. Comparison of sound wave propagation at Kn ¼ 0:00005. The upper and bottom plots correspond to the LBGK and the RILBM
results, respectively.



Fig. 4. Comparison of sound wave propagation at Kn ¼ 0:5. The upper and bottom plots correspond to the LBGK and the RILBM
results, respectively.
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up to the NS order and is thus able to capture the circular sound wave propagation within the NS regime.
However, as shown in Fig. 4, the situation becomes different at Kn ¼ 0:5, well beyond the NS regime. As
expected, the conventional LBGK fails to predict circular sound wave propagation due to having preferred
lattice directions. At the same time, RILBM preserves the isotropic sound wave front at all times.

4. Discussion

In this paper we present in detail an efficient lattice algorithm, suggested earlier in [5], that achieves full
rotational invariance with respect to lattice orientations. As discussed in [5], LBGK suffers from discrete ori-
entation artifacts at finite Kn as a result of employing a finite set of lattice velocities. This intrinsic defect is a
consequence of a finite set of discrete velocities, and is independent of temporal and spatial resolution.
RILBM uses an ‘‘infinite’’ set of lattice velocities that ‘‘densely covers’’ the continuum of lattice directions
via random rotations at each simulation time step. In the limit of infinite temporal or spatial resolution,
RILBM is expected to be fully rotationally invariant. Algorithmic implementation of this scheme is possible
and described, and the numerical results provide direct support for the theoretical predictions given above in
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this manuscript as well as in [5]. In the future, we are planning to investigate more cases of various nature,
especially those with strong nonlinearity (c.f. [16]), concerning boundary conditions (c.f. [17–19]), including
also three dimensional situations, as well as involve certain extensions of the underlying lattice models [20].
We wish to stress that RILBM and its complete algorithm is applicable to all flow situations, albeit linear
or nonlinear.

Finally, we would like to emphasize an essential difference between the functionality of collision operators
in the standard LBGK and our RILBM. The LBGK contains non-equilibrium moments of all orders, which
however are not necessarily isotropic, hydrodynamic, or physically meaningful. The projection operator in
RILBM extracts the non-equilibrium properties at the momentum moment order only. In other words,
RILBM only preserves and relaxes the modes of interest while the non-equilibrium properties associated with
the other modes are destroyed. It is known that this is sufficient and desirable for recovery of the Navier–
Stokes order fluid physics [1,2,5]. On the other hand, by extending the projection operator to include addi-
tional moments, high order non-equilibrium information essential for high Kn regimes can be realized
[11,20]. Furthermore, such a regularization of the non-equilibrium part of particle distribution functions
should significantly improve flow results at high Kn regimes.
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